Yet those questions trouble many particle physicists as well. When it comes to protons, even the simplest questions—How big is it? What is its shape?—turn out to have complicated answers. While we’ve known the basics for decades, the details are more elusive. Take size, for example. Measuring the proton isn’t as simple as getting out a really tiny ruler: Any measuring tool we use is made of other particles, and those interact with the proton we’re trying to measure. The solution: “We do it the same way [Ernest] Rutherford discovered the atom has a very small and positively charged nucleus,” said Alberto Accardi, a physicist at Jefferson Lab and Hampton University in Virginia—that is, by firing other particles at the target particle and measuring how they “scatter.” Similarly, to measure the size of a proton, physicists typically bombard it with electrons or muons, a more massive relative of the electron. The spread of the particles after scattering reveals the size and shape, much as you could use the shadow of a tall building to estimate its height. [Read more…]