Big Telescopes Reveal the Maelstrom Around a Black Hole

I’ve written quite a bit about black holes on this blog and elsewhere, including a peer-reviewed paper, though I’m hardly one of the world’s experts. Anyone who studies gravity has spent a lot of time studying black holes, since they comprise one of the first major results to come from Einstein’s general relativity that isn’t part of Newtonian physics. (Savvy readers may have heard of the “dark stars” of Lagrange and others in the 18th century, but these don’t really behave like black holes, despite superficial similarities.) So, when I got the list of forthcoming papers to be published in Science this week, I was really thrilled to see a new observation revealing the region right around the supermassive black hole in the galaxy M87. However, for reasons too boring to get into, I lost out on my chance to cover the paper for Ars Technica, so I’ll post what I wrote here instead. Update: John Timmer’s article on the same paper is also up.

High-resolution image of supermassive black hole shows engine of destruction

Gas swirls in same direction as black hole rotation, new study finds

The large image shows the jet streaming from the center of the galaxy M87, in visible light. The inset (in radio light) zooms in on the black hole, and shows the swirling gas around the galaxy’s core. M87 is one of the largest galaxies known, and has the largest-known black hole, estimated around 6.6 billion times the mass of the Sun. [Credit: J. A. Biretta et al./Hubble Heritage Team (STScI /AURA)/NASA, NRAO/AUI/NSF/W. Cotton (inset)]

Thanks to years of observation, all but the most stubborn astronomers are convinced: black holes exist. Vast numbers of objects that are simultaneously too massive and occupy too little space to be anything except black holes have been found, both within our galaxy and at the cores of nearly every other galaxy. However, many details of black holes predicted by theory are difficult to confirm observationally, simply because black holes are too small relative to their masses. In particular, the event horizon—the boundary within which nothing can escape—is typically very small, so even our best telescopes have yet to measure one.

New observations from the Event Horizon Telescope (actually an array of four millimeter-wave telescopes working in concert) have revealed the best view so far of the supermassive black hole in the galaxy M87. As described in a Science paper, astronomers measured the motion of gas to a distance approximately 5.5 times the event horizon radius. That is close enough to confirm the gas circles in the same direction the black hole itself rotates. These observations help clarify the origin of the powerful jet of gas streaming from the galaxy’s center at a high fraction of the speed of light: it is likely driven by the swirling matter near the black hole’s boundary.

Millimeter-wave observations lie on the boundary between microwaves and infrared light. Radiation of this type can pass through many regions opaque to visible light, including those occluded with gas. Since the central regions of galaxies are typically dense, millimeter-wave observations are very useful. On the other hand, the longer the wavelength, the larger the telescope must be to achieve reasonable resolution. That’s why the largest telescopes in the world are radio telescopes.

To achieve even clearer pictures, astronomers link two or more telescopes into interferometers, where the light from each instrument is combined constructively. The telescopes acting together act in much the same way as a single telescope whose size is equivalent to the distance between them, so for really high resolution is to chain together instruments separated by many miles. This is the principle behind Very Long Baseline Interferometry (VLBI).

The current study used four telescopes at sites in Hawaii (the James Clerk Maxwell Telescope on Mauna Kea), California (Combined Array for Research in Millimeter-wave Astronomy, or CARMA), and Arizona (Submillimeter Telescope) in concert to zoom in on the base of M87’s jet—the location of the supermassive black hole—using 1.3 millimeter-wavelength light. Together, this VLBI array is known as the Event Horizon Telescope (EHT), and as the name suggests, its eventual goal is to see as close to a black hole as is literally possible.

Black hole structure, revisited

At this point, I’ll break away from my Ars Technica article draft, since we need to understand a bit about black hole structure to see why this study is a big deal. The diagram below shows a rotating (or Kerr) black hole; the rotation makes the event horizon bulge out, but it also produces an interesting region known as the ergosphere. While the event horizon is the boundary of the black hole (being the point of no return), the ergosphere is a region where nothing can remain at rest, no matter how fast it moves.

Diagram of a rotating black hole, from “top” and “side” views. The ergosphere is what’s important for this post: the region of space surrounding the black hole where nothing can remain at rest, thanks to the flow of spacetime. Even beyond the ergosphere, spacetime is shaped such that particles will tend to rotate along with the black hole, a phenomenon known as frame dragging. (Click on the image for a larger version.)

Part of the problem with this diagram is that it’s static. We should be seeing a dynamic picture: the presence of the black hole distorts spacetime around it in the manner of a whirlpool. What this means is that the natural paths of particles will bend in the direction of the black hole’s rotation. This is true around any rotating body, including Earth, and goes by the name frame-dragging. Think of it this way: rotation creates a kind of moving sidewalk, so even if a particle is standing still (so to speak), gravity will carry it along. Outside the ergosphere, particles can “walk” fast enough in the opposite direction to hold their position relative to a distant observer, just like you can walk fast enough to stay in one place on an airport moving sidewalk, relative to the pillars holding up the ceiling. (Suffice to say, I can be annoying to travel with sometimes.) Within the ergosphere, to stay in one place, particles would have to exceed the speed of light relative to the moving sidewalk of the black hole’s gravity.

Ordinary rotating objects like Earth or the Sun don’t have ergospheres, but the Gravity Probe B satellite measured frame-dragging over a period of years. The results had pretty large error, but they did support the predictions of general relativity. The new observation of M87, however, provides stronger evidence for frame-dragging, even though the EHT didn’t resolve the ergosphere itself.

Swimming with the current

Beyond the ergosphere, the metaphorical moving sidewalk still pushes particles to orbit in the same direction the black hole rotates. That means, for a particle to rotate in the opposite direction, it must move very rapidly relative to the sidewalk. The EHT results couldn’t resolve the actual disk of gas swirling around the event horizon, but the researchers measured 1.3 mm emission from a distance between 2.5 and 4 times the event horizon radius.

Numerical simulations of gas circling a rotating black hole, showing the birth of a jet like that seen in M87. The twisting of the gas is caused by frame-dragging due to the rotation of the black hole. [Credit: Avery E. Broderick (University of Waterloo/Perimeter Institute)]

To understand such a jet requires extensive theoretical modeling, involving the motion of charged particles, the magnetic fields they produce, and the back-reaction of the particles as they move through the magnetic fields (see my earlier post for a bit more on that)—all in the strong gravitational field near the black hole. The most likely model involves rapidly-orbiting gas known as an accretion disk, which funnels particles into a stream moving close to the speed of light—the beginning of the long jet seen in the picture of M87 above.

However, for the base of the jet to be that close to the event horizon, the accretion disk must be small, and that’s where we get back to frame-dragging. If the disk orbited as quickly as the models predict in the direction opposite to the black hole’s rotation (as predicted by some models of jet formation) then it would have to be substantially larger than the ergosphere. This is because flowing opposite to the moving sidewalk of the frame-dragging requires a lot more energy than moving in the same direction, and closer in to the black hole—even well beyond the boundary of the ergosphere—that task becomes impossible. The EHT researchers found the base of the jet is too close in to the black hole to be driven by an accretion disk rotating in the opposite direction.

Once again, we aren’t “seeing” the black hole’s event horizon, or even its ergosphere…but thanks to the EHT, we’re much closer to those goals than before. Additionally, high-resolution observations are now able to probe into the regime of very strong gravity, where general relativity hasn’t been fully tested yet. The frame-dragging aspects of the M87 observation still are consistent with Einstein’s theory, but if our model of gravitation needs modification, the region near the event horizon of a black hole may be where deviations from predictions can occur.

I for one look forward to the next phases of observation, including the EHT’s planned proposal of Sagittarius A*, the black hole at the center of the Milky Way. Soon we may be able to verify some of the more esoteric predictions of black hole theory, and see deeper into some of the weirdest objects in our Universe.

Reference: Science, 2012. DOI: 10.1126/science.1224768

Update: The DOI link is still broken for some reason, so for those wanting to read the original paper (requires subscription or library access), here’s a link that actually works: Sheperd S. Doeleman et al., Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87Science 2012.

28 Responses to “Big Telescopes Reveal the Maelstrom Around a Black Hole”

  1. 1 Remco September 27, 2012 at 14:50

    Good coverage, but the DOI link to the article is dead. And the actual article doesn’t seem to be out yet. Did you publish this prematurely?

  2. 4 robin September 27, 2012 at 14:55

    Nice writeup. Thanks.

  3. 5 Remco September 27, 2012 at 17:35

    Also interesting that you linked both your own arxiv preprint and colleague John Timmer, but do not link to any of the scientists in the article text.

  4. 6 Matthew R. Francis September 28, 2012 at 06:07

    The DOI link is still broken, so I added a link to the Science article on their website.

  5. 9 gabipech September 28, 2012 at 10:37

    Wow, props! this is cool!

  6. 11 Jeff Cady September 28, 2012 at 22:18

    Nice explanation of what’s exciting about this terrific project.

  7. 12 J R in WV September 29, 2012 at 10:20

    Also want to say how cool this is! Thanks!

  8. 13 Mstlpflx October 5, 2012 at 18:30

    I captured the image from your page after expanding it with the pages zoom feature itself and then used a photo editing program to enhance a copy of the image to my own satisfaction. What I believe I can see in this image may actually be the true accretion disk near the black hole and possibly the absence of light which would exist in the event horizon area of that singularity. I think this may truly be the best image ever captured of such a structure in space. Look closely at the “5 o’clock ” area on the radio image. The singularity seems to be offset from the jet and the jet is revolving around it like the author of this article described as being like water circling around a drain. And the accretion disk is revolving in the opposite direction to the “jet”.

    • 14 Matthew R. Francis October 5, 2012 at 19:14

      Which image did you expand? The final image (containing three frames) is a computer simulation, not actual observational data. The first image isn’t sufficiently high resolution to see the effect—you need to see things much more closely.

      • 15 Mstlpflx October 10, 2012 at 16:36

        The image above has a caption which says the main image is in visible light and the inset is Radio imaging. I expanded and enhanced the Radio image. It is quite fascinating. The jet appears to swirl clockwise from what I see and the accretion disk of the black hole ( if you rotate the image 90 degrees left) is at the bottom foreground on the right. This is so Fantastic. If this is this clear now it should be truly amazing when they get the other Radio Telescopes networked in with what they have now. I have read that then the resolution will be much better.

  1. 1 High-resolution image of supermassive black hole shows engine of destruction « Bowler Hat Science Trackback on September 27, 2012 at 14:12
  2. 2 Big Telescopes Reveal the Maelstrom Around a Black Hole | NotSoCrazyNews Trackback on September 28, 2012 at 03:03
  3. 3 Les premières images des faisceaux de particules au bord d’un énorme trou noir. - GuruMeditation Trackback on September 29, 2012 at 09:20
  4. 4 Kapal » Les premières images des faisceaux de particules au bord d’un énorme trou noir. Trackback on September 30, 2012 at 05:57
  5. 5 Esta es la pinta que podría tener un agujero negro visto de cerca « Noticias sobre economia digital Trackback on October 4, 2012 at 05:19
  6. 6 Esta es la pinta que podría tener un agujero negro visto de cerca | Francesc Masana Trackback on October 4, 2012 at 06:09
  7. 7 Esta es la pinta que tiene un agujero negro visto de cerca | Noticias CEU Trackback on October 4, 2012 at 07:21
  8. 8 Black Holes in the Library!!! « Galileo's Pendulum Trackback on November 8, 2012 at 17:16
  9. 9 Black holes don’t suck « Bowler Hat Science Trackback on November 11, 2012 at 15:21
  10. 10 General relativity holds up under extreme gravity test | Bowler Hat Science Trackback on April 27, 2013 at 09:42
  11. 11 Destruction and beauty in a distant galaxy | Galileo's Pendulum Trackback on August 22, 2013 at 15:24
  12. 12 Measuring the rotation of Earth | Galileo's Pendulum Trackback on September 19, 2013 at 13:07
  13. 13 A scientific love affair | Galileo's Pendulum Trackback on October 7, 2013 at 20:33
Comments are currently closed.

Please Donate

DrMRFrancis on Twitter

%d bloggers like this: